Abstract

Graphene has garnered widespread attention, and its use is being explored for various electronic devices due to its exceptional material properties. However, the use of polymers (PMMA, photoresists, etc.) during graphene transfer and patterning processes inevitably leaves residues on graphene surface, which can decrease the performance and yield of graphene-based devices. This paper proposes a new transfer and patterning process that utilizes an Al intermediate layer to separate graphene from polymers. Through DFT calculations, the binding energy of graphene-Al was found to be only -0.48 eV, much lower than that of PMMA and photoresist with graphene, making it easier to remove Al from graphene. Subsequently, this was confirmed through XPS analysis. A morphological characterization demonstrated that the graphene patterns prepared using the Al intermediate layer process exhibited higher surface quality, with significantly reduced roughness. It is noteworthy that the devices obtained with the proposed method exhibited a notable enhancement in both consistency and sensitivity during electrical testing (increase of 67.14% in temperature sensitivity). The low-cost and pollution-free graphene-processing method proposed in this study will facilitate the further commercialization of graphene-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.