Abstract

High efficiency resource recovery from dairy waste activated sludge (WAS) has been a focus of attention. An investigation into the influence of two step sono-alkalization pretreatment (using different alkaline agents, pH and sonic reaction times) on sludge reduction potential in a semi-continuous anaerobic reactor was performed for the first time in literature. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (4172kJ/kg TS of supplied energy for NaOH – pH 10), COD solubilization, suspended solids reduction and biogas production was 59%, 46% and 80% higher than control. In order to clearly describe the hydrolysis of waste activated sludge during sono-alkalization pretreatment by a two step process, concentrations of ribonucleic acid (RNA) and bound extracellular polymeric substance (EPS) were also measured. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5L), with 4L working volume. With three operated SRTs, the SRT of 15 d was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 58% and 62% of suspended solids and volatile solids reduction, respectively, with an improvement of 83% in biogas production. Thus, two step sono-alkalization pretreatment laid the basis in enhancing the anaerobic digestion potential of dairy WAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.