Abstract

In this research, we provide a state-of-the-art method for semantic segmentation that makes use of a modified version of the U-Net architecture, which is itself based on deep convolutional neural networks (CNNs). This research delves into the ins and outs of this cutting-edge approach to semantic segmentation in an effort to boost its precision and productivity. To perform semantic segmentation, a crucial operation in computer vision, each pixel in an image must be assigned to one of many predefined item classes. The proposed Improved U-Net architecture makes use of deep CNNs to efficiently capture complex spatial characteristics while preserving associated context. The study illustrates the efficacy of the Improved U-Net in a variety of real-world circumstances through thorough experimentation and assessment. Intricate feature extraction, down-sampling, and up-sampling are all part of the network's design in order to produce high-quality segmentation results. The study demonstrates comparative evaluations against classic U-Net and other state-of-the-art models and emphasizes the significance of hyperparameter fine-tuning. The suggested architecture shows excellent performance in terms of accuracy and generalization, demonstrating its promise for a variety of applications. Finally, the problem of semantic segmentation is addressed in a novel way. The experimental findings validate the relevance of the architecture's design decisions and demonstrate its potential to boost computer vision by enhancing segmentation precision and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.