Abstract

The impact of loading the heteropoly acid, 12-phosphotungstic acid (HPW), on a perfluorosulfonic acid (PFSA) proton exchange membrane’s morphology was evaluated by means of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS) experiments. It is found that the addition of HPW significantly modifies the solvent structure and dynamics in the PFSA membrane, which favors the formation of interconnected proton conducting networks. It is hypothesized that these HPW induced solvent modifications account for the enhanced proton conducting characteristics of these doped membranes. Radial distribution functions and water cluster analysis indicate that the HPW organizes the local solvent water and attracts the nearby excess protons thereby creating localized “nodes” of ordered water and hydronium ions. The “nodes” are found to connect surrounding water wires/channels resulting in a more efficient proton conducting network. This redistribution of solvent and hydronium ions upon addition of HPW c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.