Abstract

Chinese hamster ovary (CHO) cells are an important host for biopharmaceutical production. Generation of stable CHO cells typically requires cointegration of dhfr and a foreign gene into chromosomes and subsequent methotrexate (MTX) selection for coamplification of dhfr and foreign gene. CRISPR interference (CRISPRi) is an emerging system that effectively suppresses gene transcription through the coordination of dCas9 protein and guide RNA (gRNA). However, CRISPRi has yet to be exploited in CHO cells. Here we constructed vectors expressing the functional CRISPRi system and proved effective CRISPRi-mediated suppression of dhfr transcription in CHO cells. We next generated stable CHO cell clones coexpressing DHFR, the model protein (EGFP), dCas9 and gRNA targeting dhfr. Combined with MTX selection, CRISPRi-mediated repression of dhfr imparted extra selective pressure to force CHO cells to coamplify more copies of dhfr and egfp genes. Compared with the traditional method relying on MTX selection (up to 250 nM), the CRISPRi approach increased the dhfr copy number ∼3-fold, egfp copy number ∼3.6-fold and enhanced the EGFP expression ∼3.8-fold, without impeding the cell growth. Furthermore, we exploited the CRISPRi approach to enhance the productivity of granulocyte colony stimulating factor (G-CSF) ∼2.3-fold. Our data demonstrate, for the first time, the application of CRISPRi in CHO cells to enhance recombinant protein production and may pave a new avenue to CHO cell engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.