Abstract

This work presents the PORTALS framework (Rodriguez-Fernandez et al 2022 Nucl. Fusion 62 076036), which leverages surrogate modeling and optimization techniques to enable the prediction of core plasma profiles and performance with nonlinear gyrokinetic simulations at significantly reduced cost, with no loss of accuracy. The efficiency of PORTALS is benchmarked against standard methods, and its full potential is demonstrated on a unique, simultaneous 5-channel (electron temperature, ion temperature, electron density, impurity density and angular rotation) prediction of steady-state profiles in a DIII-D ITER Similar Shape plasma with GPU-accelerated, nonlinear CGYRO (Candy et al 2016 J. Comput. Phys. 324 73–93). This paper also provides general guidelines for accurate performance predictions in burning plasmas and the impact of transport modeling in fusion pilot plants studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.