Abstract

In this paper, we investigate the secrecy performance of multiuser (MU) single-input multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling and multiple eavesdropping attacks. The considered system includes multiple users, one amplify-and-froward (AF) relay, one destination and multiple eavesdroppers. The users are connected with a multi-antenna relay through RF links and the relay is connected with the destination through an FSO link. Maximal ratio combining (MRC) scheme is used at the relay node to combine the received signals at its different antennas. The RF/FSO channels are assumed to follow Nakagami-m/Gamma-Gamma fading models with considering the effect of pointing errors. In particular, we derive closed- form expressions for the exact and asymptotic outage probabilities. The asymptotic outage results are then used to obtain the optimal RF transmission power based on the dominant link between the RF and FSO links. Then, the considered system secrecy performance is investigated in the presence of multi- eavesdroppers where exact closed-form expression for the intercept probability is derived. Finally, a cooperative jamming model is proposed along with power allocation to enhance the system secrecy performance. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.