Abstract

Designing photoelectrodes with particular nanostructure and composition has been regarded as a promising approach to improve the photoelectrochemical (PEC) water splitting efficiency. We report the design and synthesis of a three-dimensional (3D) nanostructure with CuO nanocones as backbones and ZnO nanorods as branches, using a facile water bath reaction process together with the atomic layer deposition (ALD) technology. As utilized in photocathodes, the optimized CuO/ZnO nanostructure, 37 cycles of ALD ZnO seedlayer and 55 min of water bath reaction of ZnO nanorods, demonstrate highly improved PEC performance. The ratio of photo to dark current density for the 3D CuO/ZnO is 6.4, much higher than the value of 2.7 for the CuO electrode. The enhanced activity is attributed to the synergistic effects of effective carrier separation and collection, reduced charge recombination, and increased carrier lifetime in the CuO/ZnO heterojunction. This work demonstrates the feasibility of designing novel 3D nanostructures by ALD technology as efficient photoelectrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.