Abstract

Background/Objectives: This study aims to create a strong binary classifier and evaluate the performance of pre-trained convolutional neural networks (CNNs) to effectively distinguish between benign and malignant ovarian tumors from still ultrasound images. Methods: The dataset consisted of 3510 ultrasound images from 585 women with ovarian tumors, 390 benign and 195 malignant, that were classified by experts and verified by histopathology. A 20% to80% split for training and validation was applied within a k-fold cross-validation framework, ensuring comprehensive utilization of the dataset. The final classifier was an aggregate of three pre-trained CNNs (VGG16, ResNet50, and InceptionNet), with experimentation focusing on the aggregation weights and decision threshold probability for the classification of each mass. Results: The aggregate model outperformed all individual models, achieving an average sensitivity of 96.5% and specificity of 88.1% compared to the subjective assessment's (SA) 95.9% sensitivity and 93.9% specificity. All the above results were calculated at a decision threshold probability of 0.2. Notably, misclassifications made by the model were similar to those made by SA. Conclusions: CNNs and AI-assisted image analysis can enhance the diagnosis and aid ultrasonographers with less experience by minimizing errors. Further research is needed to fine-tune CNNs and validate their performance in diverse clinical settings, potentially leading to even higher sensitivity and overall accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.