Abstract

The efficiency of Dynamic Inductive Power Transfer (DIPT) depends mainly on the coupling coefficient within the coupler. In order to improve this parameter, a novel approach has been introduced that results in a significant increase of between 25% and 36% at minimal additional cost in the case of juxtaposed rectangular coil configuration on the road. This method involves the incorporation of a passive additional short-circuit coil adjacent to the primary coil for obtaining a higher coupling coefficient, as has been theoretically demonstrated. Simulations carried out on Comsol have optimized the dimensions of this additional coil, not only for cost effectiveness and minimal space utilization, but also for optimal efficiency. Experimental validation was performed at reduced power, using a 2 kW test bench, and confirmed the estimation. The efficiency improvement proposed in this paper is crucial for improving the global DIPT efficiency and then facilitating its social acceptance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.