Abstract

Keratoconus is a progressive eye disease characterized by the thinning and conical distortion of the cornea, leading to visual impairment. Early and accurate detection is essential for effective management and treatment. Traditional diagnostic methods, relying primarily on corneal topography, often fail to detect early-stage keratoconus due to their subjective nature and limited scope. In this research, we present a novel multi-source detection approach utilizing transformer technology to predict keratoconus progression more accurately. By integrating and analyzing diverse data sources, including corneal topography, aberrometry, pachymetry, and biomechanical properties, our method captures subtle changes indicative of disease progression. Transformer networks, known for their capability to model complex dependencies in data, are employed to handle the multimodal datasets effectively. Experimental results demonstrate that our approach significantly outperforms existing methods, such as SVM-based, Random Forests-based, and CNN-based models, in terms of accuracy, precision, recall, and F-score. Moreover, the proposed system exhibits lower execution times, highlighting its efficiency in clinical settings. This innovative methodology holds the potential to revolutionize keratoconus management by enabling earlier and more precise interventions, ultimately enhancing patient outcomes and contributing significantly to both the medical and machine learning communities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.