Abstract

The development of effective and stable catalysts for hydrogen evolution reaction (HER) is desired for hydrogen production. Herein, we report a facile solvothermal approach to fabricate P-doped triangular PtPdCu nanodarts (PtPdCu-P NDs) using trioctylphosphine as phosphorus dopant. The PtPdCu-P NDs with separated branches can provide high surface areas and sufficient active sites for HER. Moreover, the incorporation of phosphorus into alloys can tailor the electronic structure and the d-band electron density of metals, which is beneficial for adsorption of hydrogen intermediates. Additionally, the phosphorus doping can effectively inhibit the metal dissolution during the electrolysis. Therefore, the PtPdCu-P NDs achieve a very low overpotential of 12 mV at current density of 10 mA cm−2, rapid kinetics (Tafel slope: 29 mV dec-1) in 0.5 M H2SO4, superior to the undoped PtPdCu NDs. Moreover, the PtPdCu-P NDs also exhibit excellent stability, without obvious structure change and activity degradation after 10,000 cycles and 50-h electrolysis. This P-doping strategy is a universal approach to incorporate phosphorus into various nanomaterials without the change of the overall morphology, which holds a high potential in the water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.