Abstract

Abstract This research investigates the performance of high-speed CNC milling operations on Ti6Al4V alloy by employing a novel ZnO-Ag hybrid nanofluid. The study involves the preparation and characterization of nanofluids with varying concentrations of nanoparticles, focusing on thermal conductivity and stability. The machining experiments encompass four critical input parameters: Minimum Quantity Lubrication (MQL) flow rate, cutting speed, nanofluid concentration, and feed rate. Performance evaluation is based on average surface roughness (Ra) and cutting temperature. Key findings include a remarkable 21.05% improvement in thermal conductivity for the ZnO-Ag-based sunflower oil at 0.2% volume concentration compared to 0.05% concentration. The prepared nanofluids exhibit good stability. Moreover, cutting speed and MQL flow rate emerge as significant contributors to Ra, accounting for 35.62% and 34.82%, respectively. Interestingly, MQL flow rate is identified as the most influential factor, surpassing even cutting speed. SEM images for tool wear reveals that the ZnO-Ag based sunflower oil reduced tool wear significantly. In conclusion, the proposed ZnO-Ag-based sunflower oil at 0.2% concentration emerges as the good option for sustainable high-speed machining of Ti6Al4V alloy, showcasing

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.