Abstract

Ceramic cores used in the casting must exhibit high heat resistance because they come in direct contact with molten metals. Therefore, in this study, ceramic cores with high heat resistance and fracture strength were fabricated using sodium silicate as the binder instead of a commonly used organic binder. In addition, the prepared ceramic core was coated with Si and Si-Na precursors as the inorganic binder to improve the firing strength of the ceramic core. The thermal stability and firing strength of the sample were investigated. The results revealed that the firing strength of the ceramic core was significantly improved up to 15.2 MPa owing to the formation of a glass phase between the ceramic particles, which was formed by the reaction of sodium silicate and the inorganic binder precursor. In addition, the core was completely decomposed in an NaOH solution at a relatively low temperature of 60°C, indicating the excellent elution properties of the sample. These results indicate that the method proposed in this study is suitable for the preparation of ceramic cores with high fracture strength and excellent elution behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.