Abstract
Covalent organic framework (COF) catalytic photocatalysts mediating Fenton-like reactions have been applied to the treatment of organic dyes in printing and dyeing wastewater. However, the photocatalytic performance of original COF is often unsatisfactory. This study investigated the impact of porosity modification strategies on the performance of COF photocatalysts in mediating the removal of organic dyes via Fenton-like reaction. Porosity modification was achieved by increasing the concentration of acetic acid (HAc) catalyst during COF preparation. The modified TAPB-DMTA COF (12M COF) exhibited excellent adsorption and photocatalytic properties. The Fenton-like reaction mediated by 12M COF photocatalysis removed nearly 96% of malachite green (MG) within 20 min, with a rate constant of 0.091 min−1, which was 2.9 and 6.5 times higher than that of g-C3N4 and original COF under the same reaction conditions, respectively. Additionally, the modulation mechanism of porosity modification on COF photocatalysis was explored. The conduction band (CB) of COF was reduced from −0.14 eV to −0.38 eV after porosity modification, facilitating the generation of longer-lived O2•- in the reaction system, which was conducive to efficient MG removal. Anti-interference experiments showed that the photocatalytic Fenton-like reaction system based on 12 M COF was less affected by common anions, cations and dissolved organics, while maintaining a high MG removal rate in tap water, mid-water, secondary clarifier effluent and river water. In summary, porosity modification was an effective strategy to improve the catalytic performance of original COFs. This study presented an efficient metal-free photocatalyst modification strategy for the Fenton-like reaction while avoiding the production of toxic by-products during dye degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.