Abstract
AbstractThe lifespan of lithium (Li) metal batteries (LMBs) can be greatly improved by the formation of inorganic‐rich electrode‐electrolyte interphases (EEIs) (including solid‐electrolyte interphase on anode and cathode‐electrolyte interphase on cathode). In this work, a localized high‐concentration electrolyte containing lithium bis(fluorosulfonyl)imide (LiFSI) salt, 1,2‐dimethoxyethane (DME) solvent and 1,2‐bis(1,1,2,2‐tetrafluoroethoxy)ethane (BTFEE) diluent is optimized. BTFEE is a fluorinated ether with weakly‐solvating ability for LiFSI so it also acts as a co‐solvent in this electrolyte. It can facilitate anion decomposition at electrode surfaces and promote the formation of more inorganic‐rich EEI layers. With an optimized molar ratio of LiFSI:DME:BTFEE = 1:1.15:3, LMBs with a high loading (4 mAh cm−2) lithium nickel manganese cobalt oxide (LiNi0.8 Mn0.1 Co0.1) cathode can retain 80% capacity in 470 cycles when cycled in a voltage range of 2.8–4.4 V. The fundamental understanding on the functionality of BTFEE revealed in this work provides new perspectives on the design of practical high‐energy density battery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.