Abstract

Minimal Correction Subsets (MCSs) have been successfully applied to find approximate solutions to several real-world single-objective optimization problems. However, only recently have MCSs been used to solve Multi-Objective Combinatorial Optimization (MOCO) problems. In particular, it has been shown that all optimal solutions of MOCO problems with linear objective functions can be found by an MCS enumeration procedure. In this paper, we show that the approach of MCS enumeration can also be applied to MOCO problems where objective functions are divisions of linear expressions. Hence, it is not necessary to use a linear approximation of these objective functions. Additionally, we also propose the integration of diversification techniques on the MCS enumeration process in order to find better approximations of the Pareto front of MOCO problems. Finally, experimental results on the Virtual Machine Consolidation (VMC) problem show the effectiveness of the proposed techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.