Abstract
Integrating class-C and class-F fly ash (FA) as supplementary cementitious materials (SCMs) in concrete offers a promising pathway for sustainable construction practices. This study explores the pivotal role of FA in reducing carbon dioxide (CO2) emissions and improving concrete’s durability and mechanical properties through a comprehensive life cycle analysis (LCA). By blending FA with cement, significant reductions in CO2 emissions are achieved, alongside enhancements in the workability, compressive strength, and permeability resistance of the concrete matrix. This research elucidates the pozzolanic reaction between FA and calcium hydroxide (CH) during cement hydration, highlighting its contribution to concrete strength and durability. Through a range of comprehensive analysis techniques, including mechanical testing and environmental impact assessment, this study demonstrates the substantial benefits of prioritizing the utilization of class-C and class-F FA in sustainable construction. The findings underscore the industry’s commitment to environmentally conscious practices, promoting structural integrity and reducing ecological impacts. Overall, this research emphasizes class-C and class-F FA as critical components in achieving sustainable construction goals and advancing towards a more environmentally responsible built environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.