Abstract

Efficient treatment of insensitive munition Butyl-(2-azidoethyl) nitramine (BuAENA) preparation wastewater (BPW) is of utmost importance due to its high concentration of refractory organic compounds and toxic pollutants. The BPW exhibits a CODCr of up to 100 g/L and a low ratio of BOD5 to CODCr (BOD5/CODCr < 0.2), necessitating through degradation of pollutants and enhancement of biodegradability for subsequent biochemical processing. In this study, we propose a novel approach utilizing γ-alumina loaded LaFeO3 perovskite (LFA) to activate peroxymonosulfate (PMS) for BPW degradation, which can effectively degrade refractory organic pollutants in BPW and greatly improve BOD5/CODCr. The degradation mechanism involved various reactive species, including hydroxyl radicals, sulfate radicals, and singlet oxygen, with singlet oxygen being identified as the dominant oxidant responsible for the degradation process. To optimize the degradation process, a 4-factor-3-level Response Surface Methodology (RSM) and Multilayer Perceptron (MLP) artificial neural network (ANN) were employed to model the degradation process of BPW. This study presents a promising approach for the comprehensive treatment of refractory wastewater. By improving the biodegradability of BPW and promoting a more cost-effective operating process, the proposed method holds potential for practical application in the industry of insensitive munition BuAENA preparation wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.