Abstract
Perovskite oxide offers an attractive alternative to precious metal electrocatalysts given its low cost and high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The results obtained in this work suggest a correlation of crystal structure with ORR and OER activity for LaNiO3−δ. LaNiO3−δ perovskites with different crystal structure were obtained by heating at different temperatures, e.g., 400, 600, and 800 °C followed by quenching into room temperature. Cubic structure (relative to rhombohedral) leads to higher ORR and OER activity as well as enhanced bi-functional electrocatalytic activity, e.g., lower difference in potential between the ORR at −3 mA cm–2 and OER at 5 mA cm–2 (ΔE). Therefore, this work shows the possibility to adjust bi-functional activity through a simple process. This correlation may also extend to other perovskite oxide systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.