Abstract

A series of Sr0.7Ba0.3Nb2O6−δ/x wt. % Ti (x = 1, 3, 5, and 10) composite ceramic thermoelectric materials were prepared, and the mechanism for improving their thermoelectric properties was explored. The experimental results demonstrate that nano-additive titanium powder undergoes oxidation to form TiO2 during sintering. However, under annealing in a reducing atmosphere, oxidation reactions further deplete the lattice oxygen, leading to an increased generation of oxygen vacancies and enhanced carrier concentration, ultimately leading to successful resistivity reduction. The samples consistently exhibit low thermal conductivity values below 2.0 W m−1 K−1 due to crystal defects, complex structure, and phonon scattering at the grain boundaries. The sample doped with 5 wt. %. Ti exhibits the lowest resistivity and highest PF value (409.3 μW/m K2 at 1073 K). Consequently, the figure of merit of Sr0.7Ba0.3Nb2O6−δ with 5 wt. % Ti attains its maximum value of 0.30 at 1073 K, representing a 50% increase compared to that of the undoped sample Sr0.7Ba0.3Nb2O6−δ (0.20 at 1073 K).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.