Abstract

Catalytic octanal oxidation with oxygen was performed at 100 °C and the total pressure of 5 and 10 bar in a falling film microreactor with varying reaction plates bearing different in-channel mixing structures. The liquid flow rate was changed in the range of 3.3–17.5 mL/min. The liquid-sided mass transfer over grooved or finned structured plates was enhanced by factors of 1.12 and 1.20, respectively, compared to that on a standard plate with 16 microchannels with dimensions of 1200 μm × 400 μm. The liquid flow rate over the structured plates could be increased by 60%–80% without any loss of octanal conversion. A two-dimensional convection and diffusion model adopted from Al-Rawashdeh et al. [Chem. Eng. Sci. 2008, 63, 5149] was formulated to simulate the reactor behavior, and its predictions describe the experimental results in terms of octanal conversion with an accuracy of 4.3% when the actual temperature distribution in the reactor plate is taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.