Abstract
An effective and environmental-friendly method was adopted to enhance the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4, which was prepared by thermal condensation of melamine. The enhancement was realized by hydrothermal treatment of g-C3N4 in 1.9–7.6mol/L HNO3 aqueous solutions at 80–120°C for 3–12h. The compositions, structures and physiochemical properties of the hydrothermally treated g-C3N4 were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption isotherms, Zeta potential analysis, UV–vis diffuse reflectance spectroscopy and photocurrent measurement, and their dark adsorption and visible-light (wavelength >420nm)-driven photocatalytic reduction of Cr(VI) in aqueous solution were tested. It was found that the hydrothermally treated g-C3N4 exhibited significantly enhanced Cr(VI) adsorption and photocatalytic reduction activity than g-C3N4. Moreover, larger concentration of HNO3 aqueous solution, higher hydrothermal temperature or longer treatment time resulted in higher Cr(VI) adsorption and photocatalytic reduction activity of the hydrothermally treated g-C3N4. The reasons accounting for the enhanced Cr(VI) adsorption and photocatalytic reduction activity of the hydrothermally treated g-C3N4 were discussed, and the different mechanisms for the photocatalytic reduction of Cr(VI) over g-C3N4 and the hydrothermally treated g-C3N4 were also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.