Abstract
We investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba(Fe0.92Co0.08)2As2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. We observe large increases in the critical current density (Jc), ranging from a factor of ∼3 at low magnetic fields to a factor of ∼10 at fields close to 1 T after irradiation with a nominal fluence of BΦ = 3.5 T. From the normalized flux creep rates (S) and the Maley analysis, we determine that the Jc increase can be mainly attributed to a large increment in the pinning energy, from <50 K to ≈500 K, while the glassy exponent μ changes from ∼1.5 to <1. Although the enhancement of Jc is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.