Abstract

The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x ≤ 0.3) and Mn excess (y > 1) concentrations were nanostructured with vertically aligned column-shaped crystallites spread perpendicular to the film plane. It was found that microstructure, resistivity, and magnetoresistive properties of the films strongly depend on the strontium and manganese concentration. All films (including low Sr content) exhibit a metal–insulator transition typical for manganites at a certain temperature, Tm. The Tm vs. Sr content dependence for films with a constant Mn amount has maxima that shift to lower Sr values with the increase in Mn excess in the films. Moreover, the higher the Mn excess concentration in the films, the higher the Tm value obtained. The highest Tm values (270 K) were observed for nanostructured LSMO films with x = 0.17–0.18 and y = 1.15, while the highest low-field magnetoresistance (0.8% at 50 mT) at room temperature (290 K) was achieved for x = 0.3 and y = 1.15. The obtained low-field MR values were relatively high in comparison to those published in the literature results for lanthanum manganite films prepared without additional insulating oxide phases. It can be caused by high Curie temperature (383 K), high saturation magnetization at room temperature (870 emu/cm3), and relatively thin grain boundaries. The obtained results allow to fabricate CMR sensors for low magnetic field measurement at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.