Abstract

Regnase-1 is an ribonuclease that plays essential roles in restricting inflammation through degrading messenger RNAs (mRNAs) involved in immune reactions via the recognition of stem-loop (SL) structures in the 3' untranslated regions (3'UTRs). Dysregulated expression of Regnase-1 is associated with the pathogenesis of inflammatory and autoimmune diseases in mice and humans. Here, we developed a therapeutic strategy to suppress inflammatory responses by blocking Regnase-1 self-regulation, which was mediated by the simultaneous use of two antisense phosphorodiamidate morpholino oligonucleotides (MOs) to alter the binding of Regnase-1 toward the SL structures in its 3'UTR. Regnase-1-targeting MOs not only enhanced Regnase-1 expression by stabilizing mRNAs but also effectively reduced the expression of multiple proinflammatory transcripts that were controlled by Regnase-1 in macrophages. Intratracheal administration of Regnase-1-targeting MOs ameliorated acute respiratory distress syndrome and chronic fibrosis through suppression of inflammatory cascades. In addition, intracranial treatment with Regnase-1-targeting MOs attenuated the development of experimental autoimmune encephalomyelitis by promoting the expansion of homeostatic microglia and regulatory T cell populations. Regnase-1 expression was inversely correlated with disease severity in patients with multiple sclerosis, and MOs targeting human Regnase-1 SL structures were effective in mitigating cytokine production in human immune cells. Collectively, MO-mediated disruption of the Regnase-1 self-regulation pathway is a potential therapeutic strategy to enhance Regnase-1 abundance, which, in turn, provides therapeutic benefits for treating inflammatory diseases by suppressing inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.