Abstract

AbstractThis paper presents and compares films made using the solution casting method with a mixture of poly (vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), graphene oxide (GO), and lead zirconate titanate (PZT). The Hummers' method synthesized GO. Scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and tensile testing were realized. The developed composite films were found to have a coherent distribution of PZT and GO in PVDF‐HFP. After that, a gradual improvement, such as an increase in the quantity of β phase, produces high piezoelectric performance. Also, the PVDF‐HFP polymer's thermal stability improved. When 0.1 wt% of PZT/GO was added, the melting temperature increased from 140 to 143°C, and the crystallization temperature from 109 to 113°C. PVDF‐HFP elastic modulus and tensile strength were also considerably reduced as PZT/GO increased. As a result, this has enabled us to develop composite films with important properties that can be used as piezoelectric materials for energy harvesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.