Abstract

ABSTRACT This research focuses on developing a new material by reinforcing chemically treated Eleusine Indica (EI) fiber with epoxy resin as matrix. Composites using varying wt% of treated EI fibers were fabricated taking epoxy as matrix. The effect of chemical treatment and fiber loading on various mechanical properties, thermal, and morphology using a scanning electron microscope (SEM) was investigated. From the results obtained, it is obvious that the mechanical and thermal properties of composites reinforced with chemically treated fibers were enhanced due to fiber surface modification which helps in better bonding with matrix. Moreover, the composites with 20 wt% fiber concentration shows good tensile strength, Young’s modulus, impact strength and was found to be 79.31MPa, 3.84 GPa, 32.24 KJ/m2 respectively. At this fiber loading the composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric (TGA) and compared with untreated fiber reinforced composites and neat epoxy. Finally, the failure analysis of fracture surface due to delimitation, pull-out of the fibers, percentage of voids, and composite fracture has been verified using scanning electron microscope. The findings provide manufacturers and engineers with a general concept of how to employ the composites to make low-weight automotive parts for improved fuel efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.