Abstract

We demonstrate enhanced light emission in the orange and red regions from regularly arrayed InGaN/GaN nanocolumns due to the surface plasmon (SP) coupling. A maximum photoluminescence (PL) enhancement ratio of 5.2 is observed by coating the nanocolumns with an Au thin film. In addition, a 2.1-fold increase in the internal quantum efficiency is obtained. Comparison of an electromagnetic field simulation and a theoretical calculation based on the SP dispersion indicates that the SP originates from a standing wave mode arising from the periodic Au/dielectric interface. The column-diameter dependence of the PL enhancement ratio can be reasonably explained by considering the simulated electric field intensity. The periodic plasmonic nanostructure is effective for improving the emission efficiencies of InGaN-based light emitters in the orange and red regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.