Abstract
We study the nonlinear interaction of laser light with vacuum for a large angular aperture at electromagnetic field strengths far below the Schwinger limit. The polarization and magnetization in vacuum irradiated by a focused laser beam clearly differ from those in matter. This is due to the dependence on the Lorentz invariant, which results in a ring-shaped radiation distribution in vacuum. The number of the radiated photons increases nonlinearly with increasing angular aperture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.