Abstract

Nickel-rich cathode materials are increasingly being applied in commercial lithium-ion batteries to realize higher specific capacity as well as improved energy density. However, low structural stability and rapid capacity decay at high voltage and temperature hinder their rapid large-scale application. Herein, a wet chemical method followed by a post-annealing process is utilized to realize the surface coating of tantalum oxide on LiNi0.88Mn0.03Co0.09O2, and the electrochemical performance is improved. The modified LiNi0.88Mn0.03Co0.09O2 displays an initial discharge capacity of ∼ 233 mAh/g at 0.1 C and 174 mAh/g at 1 C after 150 cycles in the voltage range of 3.0 V–4.4 V at 45 °C, and it also exhibits an enhanced rate capability with 118 mAh/g at 5 C. The excellent performance is due to the introduction of tantalum oxide as a stable and functional layer to protect the surface of LiNi0.88Mn0.03Co0.09O2, and the surface side reactions and cation mixing are suppressed at the same time without hampering the charge transfer kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.