Abstract

In this study, the electroluminescence efficiency of the blue–green polymer light-emitting diodes (PLEDs) is enhanced by the insertion of blocking layers. PLEDs are multilayered structures prepared with spin-coating and thermal evaporation. Blue host is doped with green guest to form a single emission layer. Poly(9-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) are used as materials for the blocking layers. The optimal thicknesses of the PVK and BCP layers are 10 and 0.2nm, respectively. PVK plays an important role of blocking holes and electrons, and BCP not only confines holes in the emission layer but also enhances the injection of electrons from Alq3 to the emission layer. The efficiency of a PLED with a dual-blocking layer is 2.37 times higher than that of a PLED without a blocking layer prepared because of the improved carrier balance and the enhanced carrier recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.