Abstract

The rate of α-methylglucoside efflux from wild-type cells of Escherichia coli K-12 is enhanced by different substrates, as long as they are readily respired. A similar enhancement takes place in strains with impaired oxidative phosphorylation ( unc mutants), regardless of their being able (strains AN120, N 144, and AN382) or unable (strain NR70) to energize the membrane through respiratory electron flow. The uncouplers carbonylcyanide- m-chlorophenylhydrazone and tetrachlorosalicylanilide do not diminish the efflux acceleration in wild-type strains or unc mutants. However, the stimulation of α-methylglucoside efflux does not occur in the mutant AN59 which cannot perform a normal respiratory electron transport due to a defective synthesis of ubiquinone. The failure to stimulate the efflux is observed with succinate, which is a typical substrate of respiration, as well as with substrates which can yield ATP both at respiratory and substrate levels such as gluconate or glycerol. Moreover, potassium cyanide nullifies the acceleration of α-methylglucoside efflux caused in any type of strain and by any substrate. These results show that neither ATP nor an energized state of the membrane appears to be needed for respiration to accelerate α-methylglucoside release from E. coli cells, and question the existence of any energy-requiring reaction for αMG exit, previously proposed by other authors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.