Abstract

The pyroelectric properties of polymer-ceramic nanocomposites of Lithium niobate/Poly (vinylidene fluoride) or LiNbO3/PVDF (abbreviated LN/PVDF) for thermal/infrared sensing applications are reported in this work. The composites are prepared by dispersing nanoparticles of LiNbO3, with particle size in the range 45–65 nm, in β-PVDF matrix at varying volume fractions, and cast in the form of flexible films by solvent-cast technique. The electro-active β-phase of PVDF is confirmed by powder X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analyses. The thermal properties, thermal conductivity and specific heat capacity, of the composites are determined by a photothermal technique. The prepared films have been poled in a high dc electric field, and their pyroelectric and dielectric properties measured by direct methods. From these data the pyroelectric figures of merit of the composite films have been determined and their values compared with corresponding values for pure PVDF film. The Shore hardness of the films has been measured to estimate the extent to which the flexibility of the films is affected by the addition of ceramic. Significant enhancement in pyroelectric sensitivity has been obtained with increase in volume fraction of LiNbO3 nanoparticles. However, this enhancement is at the expense of the flexibility of the composite; so one has to strike a balance between the two while selecting a suitable composition for the development of pyroelectric sensors with these materials. The results of this work provide guidelines for this selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.