Abstract

Metallic lithium is a promising anode material whose application in rechargeable batteries has been limited by complicated chemical and morphological changes during cycling. These problems can be addressed by the introduction of protective coatings that help to improve the interphasial properties of these electrodes. In this study we used a dip-coating method to generate protective Fp-silane-derived coatings by direct reaction with the surface of metallic lithium. The effect of these coatings has been investigated by comparing the electrochemical performance of coated vs. uncoated electrodes through galvanostatic cycling and electrochemical impedance spectroscopy (EIS). A cycle life enhancement of up to 500% of that of uncoated lithium was observed. Additionally, we observed a trade-off between the value of the obtained stable capacity and the cycle life, which depended on the type of organic substituent on the silane moiety. These results imply that application-tailored protective coatings might, in the near future, enable the efficient use of metallic lithium electrodes in rechargeable batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.