Abstract

An experimental investigation has been carried out for turbulent flow in a tube with perforated twisted tape inserts. The mild steel twisted tape inserts with circular holes of different diameters (i.e., perforation) are used in the flow field. An intensive laboratory study is conducted for heat transfer and pressure drop characteristics in the tubes for turbulent flow with various airflow rates. Heat transfer and pressure drop data are engendered for a wide range Reynolds number (1.3×104–5.2×104). Tube wall temperature, pressure drop, air velocity, and its temperature are measured both for plain tube and for tube with perforated twisted tape inserts. Heat transfer coefficients, Nusselt number, pumping power, and heat transfer effectiveness are calculated for both cases. Experimental results showed that perforated twisted inserts of different geometry in a circular tube enhanced the heat transfer rate with an increase in friction factor and pumping power for turbulent flow. The pumping power, heat transfer coefficient, and effectiveness in the tube with the twisted tape inserts are found to increase up to 1.8, 5.5, and 4.0 times of those for the plain tube for same Reynolds number, respectively. Finally, a correlation is developed for prediction of the heat transfer rate for turbulent flow through a circular tube with perforated twisted tape inserts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.