Abstract

Abstract We investigated strontium oxide (SrO) as an interlayer material to enhance the UV stability of a CH3NH3PbI3 perovskite solar cell. Moisture and over 400 nm wavelength of light were excluded to investigate the effect of UV light only. Two different interlayer fabrication processes were examined to optimize the performance of this solar cell. Devices fabricated by dipping for 30 min in SrO solution exhibited photoconversion efficiencies of 15.5%, whereas those fabricated with 60-min dipping showed photoconversion efficiencies of 15% and exhibited local Sr agglomeration. Devices with SrO displayed lower initial efficiencies than those without any SrO layer (17.6%), However, a device without SrO retained only 34.4% of its initial efficiency after 100 h of UV exposure. In contrast, SrO-incorporated devices retained almost 60.0% of their initial efficiency. Severe μ-PL mapping intensity degradation was observed in devices that did not include the interlayer, but no degradation was observed in those with the SrO interlayer. This can be attributed to the passivation of the degradation sites by SrO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.