Abstract

Diffuse ultrasonic backscatter measurements have been shown to enhance the detection capability of sub-wavelength flaws when combined with extreme value statistics. However, for a normal-incidence immersion measurement, a “dead zone” created by the ring-down of the front-wall echo will hide near-surface flaws. In this article, a pulse-echo transverse wave backscatter measurement is used to detect near-surface flaws under high gain. The approach is validated using a magnesium specimen with side-drilled holes. The confidence bounds of the grain noise from this specimen are given by a transverse-to-transverse scattering model, which takes the grain size distribution and the hexagonal crystal symmetry into account. The upper bound is then treated as a time-dependent threshold for the C-scan. Experiments show that the developed method has good performance for detecting sub-wavelength, near-surface flaws, and can suppress both missed detections and false positives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.