Abstract

Model predictive controllers (MPC) with the two-loop scheme are successful approaches practically and can be classified into two main categories, tube-based MPC and MPC-based reference governors (RG). In this paper, an enhanced two-loop MPC design is proposed for a pre-stabilized system with the bounded uncertainty subject to the input and state constraints. The proposed method offers less conservatism than the tube-based MPC methods by enlarging the restricted input constraint. Contrary to the MPC-based RGs, the investigated method improves tracking performance of the pre-stabilized system while satisfying the constraints. Additionally, the robust global asymptotic stability of the closed-loop system is guaranteed in a novel procedure with terminal constraint relaxation. Simulation of the proposed method on a servo system shows its effectiveness in comparison to the others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.