Abstract

This letter presents a voltage-controlled tunable attenuator based on few layer graphene flakes. The proposed structure exploits the variation of graphene resistance with an applied bias voltage. The attenuator consists of a microstrip line, connected to grounded metal vias through graphene pads: when no bias voltage is applied, the resistance of graphene is high and the pads behave as open circuits, causing minimum attenuation. By increasing the bias voltage, the resistance of the graphene pads decreases, connecting the metal vias to the microstrip, thus increasing the attenuation. A prototype operating in the frequency band from dc to 5 GHz has been designed and tested. The measured attenuation ranges from 0.3 to 15 dB at 3 GHz, with a bias voltage ranging from 0 (minimum attenuation) to 6.5 V (maximum attenuation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.