Abstract

SnSe single crystals have been demonstrated to possess excellent thermoelectric properties. In this work, we demonstrate a grain size control method in growing nanocrystalline SnSe thin films through a glancing angle pulsed-laser deposition approach. Structural characterization reveals that the SnSe film deposited at a normal angle has a preferred orientation along a axis, while by contrast, the SnSe film deposited at an 80° glancing angle develops a nanopillar structure with the growth direction towards the incident atomic flux. The glancing angle deposition greatly reduces the grain size of the thin film due to a shadowing effect to the adatoms, resulting in significantly increased power factor for more than 100%. The maximum Seebeck coefficient and power factor are 498.5μV/K and 18.5μWcm−1K−2, respectively. The enhancement of thermoelectric property can be attributed to the potential barrier scattering at grain boundaries owing to the reduced grain size and increased grain boundaries in the film. Given this enhanced power factor, and considering the fact that the nanopillar structure should have much lower thermal conductivity than a plain film, the zT value of such made SnSe film could be significantly larger than the corresponding single crystal film, making it a good candidate for thin film-based thermoelectric device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.