Abstract
This study investigates the thermoelectric properties of Pb-doped p-type Bi0.5Sb1.5Te3 alloys using the Single Parabolic Band (SPB) model, focusing on optimizing room-temperature performance. We systematically analyze the effects of Pb doping (0, 0.49, 0.65, 0.81, 0.97, and 1.3 at%) on key parameters including density-of-states effective mass (md *), non-degenerate mobility (μ0), weighted mobility (μw), and the thermoelectric quality factor (B-factor) at 323 K. The results reveal that md * reaches a maximum of 1.37 me at 0.97 at% Pb doping, representing a 22.25 % increase over the pristine sample. The highest μ0 of 234.5 cm2 V-1 s-1 is achieved at 0.65 at% Pb, highlighting the complex relationship between doping and carrier mobility. Notably, 0.97 at% Pb doping optimizes thermoelectric performance, yielding the highest μw, power factor, and B-factor. This composition also minimizes lattice thermal conductivity (k1) by 44.93 % compared to the undoped sample, significantly reducing phonon heat conduction. The Callaway-von Baeyer model corroborates these findings, indicating maximized point defect scattering at 0.97 at% Pb. A theoretical peak figure-of-merit (zT) of 1.74 is thus predicted at this doping level, demonstrating a possible substantial enhancement in thermoelectric efficiency upon appropriate carrier concentration tuning. The observed trends in Seebeck coefficient, Hall carrier concentration, and Hall mobility with increasing Pb content provide insights into the underlying mechanisms of performance enhancement. This comprehensive study highlights the critical role of precise Pb doping in optimizing the thermoelectric properties of Bi0.5Sb1.5Te3 alloys for room-temperature applications and establishes a framework for future investigations into similar material systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.