Abstract
Composites were prepared, through hot pressing, using carbon materials with different pore size distributions as additives for commercial Bi0.5Sb1.5Te3 thermoelectric material (BST, p-type). Thermoelectric properties of the composites were measured in a temperature range of 298‒473 K. Thermal conductivity of the composites, especially lattice thermal conductivity, was effectively decreased due to the mesoporous properties of the incorporated carbon additives. The electrical conductivity of the composites slightly decreased due to the electron scattering at the interface between the carbon material and the commercial BST matrix. The composite with 0.2 vol.% mesoporous carbon powder (36% mesoporosity) exhibited a figure of merit value approximately 10.7% higher than that of commercial BST without additives. This behavior resulted in 116% improved output power in the composite block-based single element compared with a bare BST thermoelectric block. The enhanced figure of merit was attributed to the effective reduction of lattice thermal conductivity by acoustic phonons scattering at the interface between the BST matrix and the mesoporous carbon as well as at the pore surfaces within the mesoporous carbon. By utilizing mesoporous carbon materials used in this study, the shortcomings and economic difficulties of the composite process with low dimensional carbon additives (carbon nanotubes, graphene, and nanodiamond) can be overcome for extensive practical applications. Mesoporous carbon powder with a tailored porosity distribution revealed the validity of bulk-type carbon additives to enhance the figure of merit of commercial thermoelectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.