Abstract
With the decreased sizes of microelectronic devices, the excess heat has become one of the most important factors that shorten the lifetime of electronic components. As a result, developing materials with high-thermal conductivity is an urgent issue. In this study, we combine an ultrasonic exfoliation and evaporated self-assembly methods to prepare boron nitride nanosheets (BNNS)/thermoplastic polyurethane (TPU) composites with small (S) and large (L) sizes connected BNNS as additives. Our results indicate that BNNS/TPU nanocomposites have better thermal conductivity than TPU, and the optimum performance is achieved at 10 wt% BNNS(S/L-1/9)/TPU. This enhanced thermal conductivity is ascribed to the successful construction of effective thermal conductive pathway. The S-BNNS is connected to the adjacent L-BNNS in TPU, which can also form a dense structure. The formation of the continuous thermal conductive pathways and networks structure facilitate the heat diffusion throughout the composites, which are the key to achieving high thermal conductivity in polymer composites. Furthermore, these results may be helpful to the deeper understanding for the combined structure of fillers in polymer matrix, which will expand the scope of applications for these materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.