Abstract

Ferroelectric photovoltaic (FE-PV) materials have generated widespread attention due to their unique switchable photovoltaic behavior, but suffering from low photocurrent and remanent polarization. Herein, enhanced ferroelectric polarization and switchable photovoltaic in BiFeO3 based thin films were achieved by the optimization of Bi content. The compact and uniform films with few defects were obtained by the control of chemical composition. The remanent polarization increased from 3.4 to 73.9 μC cm−2 showing a qualitative leap. Intriguingly, the control range of photovoltaic signal between two polarization directions of the short-circuit current density (JSC) and open circuit (VOC) in present films exhibited an increase of 99.2% and 278.9%, respectively. It is suggested that the ferroelectric polarization was the main driving force for enhancing switchable ferroelectric photovoltaic. Therefore, the present work outstands a simple idea to enhance switchable ferroelectric photovoltaic based on the chemical engineering, providing a promising pathway for the development of photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.