Abstract

The proximity of nitrate anions to the air-water interface is thought to strongly influence their photodissociation quantum yield, due to a reduced solvent cage effect at the water surface. Although nitrate in aqueous solution exhibits little or no surface affinity, the release of gas phase NO2 (nitrate's primary photodissociation product) has been reported to be enhanced when halides, in particular bromide, are also present in solution. Here, we use glancing-angle Raman spectroscopy to investigate whether solutions containing both nitrate and halides show different propensities for nitrate at the air-water interface. We find that bromide enhances, and chloride has little effect on (or perhaps suppresses) the surface partitioning of nitrate anions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.