Abstract
The Bathe algorithm is superior to the trapezoidal rule in solving nonlinear problems involving large deformations and long-time durations. Generally, the parameter γ=2−2 is highly recommended due to its optimal numerical properties. This paper further studies this implicit composite sub-step algorithm and thus presents a class of the Bathe-like algorithm. It not only gives a novel family of composite algorithms whose numerical properties are the exactly same as the original Bathe algorithm with γ=2−2, but also provides the generalized alternative to the original Bathe algorithm with any γ. In this study, it has been shown that the Bathe-like algorithm, including the original Bathe algorithm, can reduce to two common single-step algorithms: the trapezoidal rule and the backward Euler formula. Besides, a new parameter called the algorithmic mode truncation factor is firstly defined to describe the numerical property of the Bathe-like algorithm and it can estimate which modes to be damped out. Finally, numerical experiments are provided to show the superiority of the Bathe-like algorithm over some existing methods. For example, the novel Bathe-like algorithms are superior to the original Bathe algorithm when solving the highly nonlinear pendulum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.