Abstract

Spin thermoelectric effects in BN-embedded zigzag graphene nanoribbons (ZGNRs) are studied by a first-principles method. The multiple spin-up (spin-down) quasi-bound states below (above) the Fermi level can be introduced by the BN bonded pairs, leading to the dip structures in the transmission spectra. We further find that the spin thermoelectric effect at the Fermi level is obviously stronger than the corresponding charge thermoelectric effect. As the more BN bonded pairs are gradually doped from the edge to middle regions, the spin thermoelectric figure of merit (FOM) can be improved up to ten times than the charge thermoelectric FOM. A pure spin current can also be achieved in the BN-embedded ZGNRs under an external thermal bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.