Abstract
This study investigates and discusses groundwater system characterization problem utilizing surrogate modeling. In this inverse problem, the contaminant signals at monitoring wells are recorded to recreate the pollution profiles. In this study, simulation-optimization approach is a technique utilized to solve inverse problems by formulating them as an optimization model, where evolutionary computation algorithms are used to perform the search. In this approach, the partial differential equations (PDE) groundwater transport simulation model is solved iteratively during the evolutionary search, which in general can be computationally expensive since thousands of simulation model evaluations will be evaluated. To overcome this limitation, the simulation model is replaced by a surrogate model, which is computationally much faster than the simulation model and yet is relatively accurate. Artificial neural networks (ANN) is used to construct surrogate models that provide acceptable accuracy performances. The ANN surrogate model, which replaces the PDE groundwater transport simulation model, is then coupled with a genetic algorithm (GA) search procedure to solve the source identification problem. The results will present the quality solution of the ANN surrogate model versus the groundwater simulation model, the solution of the inverse problem for different experiment scenarios and finally a timing study analysis conducted to measure the surrogate model performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.