Abstract

Biological wastewater treatment generates a large quantity of sewage sludge that requires proper treatments. In this study, the biochar pyrolyzed by sludge conditioned with Fenton's reagent and lime (referred to as Fenton-lime system) was first used as an efficient silicon fertilizer for rice cultivation. When the pyrolysis temperature was 750 °C, the dissolved silicon and available silicon contents in biochar derived from sludge conditioned with Fenton-lime system were much higher than those in raw sludge derived biochar without conditioning (3.49 vs. 0.72, 77.25 vs. 2.33 mg/g dry solid, respectively). The enhanced available silicon content was attributed to the newly formed calcium aluminosilicate from the reactions between the added lime and silicon-rich phases in sludge. The rice cultivated with biochar derived from Fenton-lime conditioned sludge showed improved biomass of stem and root by 76.85% and 36.11%, respectively, compared to blank group without the addition of Si source. Heavy metals and the reactive oxygen species (ROS) accumulation in rice were not observed after a culture period of 30 days in the application of sludge-derived biochar as silicon fertilizer. This study provides a promising approach for sewage sludge recycling as an efficient silicon fertilizer in silicon-deficiency land.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.